Fluoroalkylimido-complexes of Group VIII Metals

By M. J. MCGLINCHEY and F. G. A. STONE*

(Department of Inorganic Chemistry, The University, Bristol BS8 1TS)

Summary 2H-Hexafluoropropyl azide reacts with a number of low-valent metal complexes to form a series of mononuclear fluoroalkylimido-derivatives: some of these complexes undergo ligand-addition reactions.

A NITRENE[†] complex of ruthenium has recently been postulated as an unstable intermediate in the conversion of $[(H_3N)_5RuN_3]^{2+}$ into $[(H_3N)_5RuN_2Ru(NH_3)_5]^{4+}$ by acid,¹ while organic azides and (Ph₃P)₂Ir(CO)Cl afford the dinitrogen complex (Ph₃P)₂Ir(N₂)Cl rather than "nitrenes".² Isolation of a stable perfluoromethylimidoiridium complex by N-N bond cleavage of hexafluoroazomethane³ suggests that fluoroalkylimido-complexes might have enhanced stability, thereby permitting more detailed study of the chemistry of this type of complex.

Reaction between 2H-hexafluoropropyl azide4 and (Ph₃P)₂Ir(CO)Cl in benzene at room temperature affords $(Ph_3P)_2Ir(CO)(Cl)(NR_F)$ $(R_F = CF_3 \cdot CHF \cdot CF_2)$ (I), the i.r. spectrum of which shows ν_{co} at 2069 cm^{-1} indicating the presence on iridium of a strongly electron-withdrawing ligand.⁵ The ¹⁹F n.m.r. spectrum [δ 74·3 (3F), 139·5 (2F), and 152.4 (1F) p.p.m. (relative to CCl_3F)] is consistent with the presence of a $CF_3 \cdot CHF \cdot CF_2$ group.⁴ The compound $(Ph_3P)_2Ir(N_2)Cl^2$ reacts with $CF_3 \cdot CHF \cdot CF_2 \cdot N_3$ to give the four-co-ordinate complex $(Ph_3P)_2Ir(NR_F)Cl$ (II) with concomitant loss of molecular nitrogen. Similarly, $(\mathrm{Ph_3P})_3\mathrm{RhCl^6} \quad \mathrm{with} \quad \mathrm{CF_3}{\cdot}\mathrm{CHF}{\cdot}\mathrm{CF_2}{\cdot}\mathrm{N_3} \quad \mathrm{affords} \quad (\mathrm{Ph_3P})_2{\text{-}}{\cdot}\mathrm{CHF}{\cdot}\mathrm{CF_2}{\cdot}\mathrm{N_3} \quad \mathrm{affords} \quad (\mathrm{Ph_3P})_2{\text{-}}{\cdot}\mathrm{CHF}{\cdot}\mathrm{CF_2}{\cdot}\mathrm{CHF}{\cdot}\mathrm{CF_2}{\cdot}\mathrm{N_3} \quad \mathrm{affords} \quad (\mathrm{Ph_3P})_2{\text{-}}{\cdot}\mathrm{CHF}{\cdot}\mathrm{CF_2}{\cdot}\mathrm{CHF}{\cdot}\mathrm{CF_2}{\cdot}\mathrm{CHF}{\cdot}\mathrm{CF_2}{\cdot}\mathrm{CHF}{\cdot}\mathrm{CF_3}{\cdot}\mathrm{CHF}{\cdot}\mathrm{$ $Rh(NR_{\it r})Cl~(III)~[\nu_{Rh\text{-}Cl}~289~cm^{-1}].$

2H-Hexafluoropropyl azide also reacts with metals of the iron triad in zero-oxidation state (d^8) . The compounds $(Ph_3P)_2M(CO)_3$ (M = Ru or Os) yield complexes $(Ph_3P)_2$ - $M(CO)_2(NR_p)$, the i.r. spectra of which show two v_{co} bands at 1979 and 2046 cm⁻¹ (IV; M=Ru) and 1968 and 2042 cm⁻¹ (V; M = Os), respectively, indicating a *cis*arrangement of the carbonyl groups.

The d^{10} compounds $(Ph_2PMe)_4M$ (M = Pd or Pt) react with $CF_3 \cdot CHF \cdot CF_2 \cdot N_3$ in benzene to give the deep-red microcrystalline trico-ordinate complexes (Ph₂PMe)₂MNR_r (VI; M=Pd, VII; M=Pt). The ¹H n.m.r. spectra show the CH_3 signal as a doublet $(J_{PR} \ 12 \ Hz)$.

With the exception of (VI), the above complexes are air stable at room temperature. They are all insoluble in most non-polar solvents, and all have ¹⁹F n.m.r. signals at about δ 75 (3F), 140 (2F), and 152 (1F) p.p.m. (relative to CCl₃F).

If the imido-ligand may be regarded formally as being in the singlet state, then a p-orbital on the nitrogen would be vacant, and so able to accept electron density from a filled metal d-orbital; back-bonding would be enhanced by the strongly electron-withdrawing fluoroalkyl group. It may be essential for the metal to have σ -donor ligands, e.g. phosphines, present so as to enhance its ability to engage in synergic bonding with the fluoroalkylimido-ligand. Interestingly, $Ru_3(CO)_{12}$, which contains only strongly π -acceptor ligands, reacts with $CF_3 \cdot CHF \cdot CF_2 \cdot N_3$ to give a cluster compound $\mathrm{Ru}_3(\mathrm{CO})_9(\mathrm{NR}_F)_2$ (VIII), analogous to the product from Fe₂(CO)₉ and CH₃·N₃.⁷

The co-ordinatively unsaturated complexes (II) and (III) undergo ligand-addition reactions. For example, (III) reacts with hexafluoroacetone and acetyl chloride to give $(Ph_3P)_2Rh(NR_r)[(CF_3)_2CO]Cl$ (IX) and $(Ph_3P)_2$ - ${\rm Rh}({\rm NR}_{_F})({\rm COCH}_3){\rm Cl}_2$ (X), respectively. The $^{19}{\rm F}$ n.m.r. spectrum of complex (IX) shows bands at δ 75.9 (3F), 78.1 (6F), 140.1 (2F), and 153.0 (1F) p.p.m., as expected for the presence of co-ordinated $CF_3 \cdot CHF \cdot CF_2 \cdot N$ and $(\mathrm{CF}_3)_2\mathrm{CO}^8$ groups. The $^1\mathrm{H}$ and $^{19}\mathrm{F}$ n.m.r. spectra of (X) are consistent with the formulation, as is the presence of v_{co} (max) at 1615 cm⁻¹. Complex (II) reacts with mercuric chloride to form (Ph₃P)₂Ir(NR_F)(HgCl)Cl₂, and on carbonylation affords (I) without displacement of the R,N ligand. In contrast, (III) reacts with CO to give (Ph₃P)₂Rh(NR_F)-(CO)Cl (XI) (v_{co} 2088 cm⁻¹) and (Ph₃P)₂Rh(CO)Cl. Satisfactory analytical and molecular weight data have been obtained on all of the above complexes.

(Received, July 24th, 1970; Com. 1228.)

† A referee has pointed out that according to IUPAC rules such compounds should more correctly be referred to as imidocomplexes. Accordingly, the new compounds described herein are referred to as fluoroalkylimido-derivatives.

- ¹ L. A. P. Kane-Maguire, F. Basolo, and R. G. Pearson, J. Amer. Chem. Soc., 1969, 91, 4609.
 ² J. P. Collman, M. Kubota, F. D. Vastine, J. Y. Sun, and J. W. Kang, J. Amer. Chem. Soc., 1968, 90, 5430.
 ³ J. Ashley-Smith, M. Green, N. Mayne, and F. G. A. Stone, Chem. Comm., 1969, 409.
 ⁴ R. E. Banks, D. Berry, M. J. McGlinchey, and G. J. Moore, J. Chem. Soc. (C), 1970, 1017.

- ⁵ L. Vaska, Accounts Chem. Res., 1968, 1, 337.
- J. A. Osborn, F. H. Jardine, J. F. Young, and G. Wilkinson, J. Chem. Soc. (A), 1966, 1711.
 M. Dekker and G. R. Knox, Chem. Comm., 1967, 1243.
- ⁸ B. Clarke, M. Green, R. B. L. Osborn, and F. G. A. Stone, J. Chem. Soc. (A), 1968, 168.